Now showing 1 - 10 of 17
  • Publication
    Metadata only
    Resistance training does not increase myocellular garbage dumps: A pilot study on lipofuscin in skeletal muscle fibers of resistance trained young men
    (2024-01-31)
    Jacko, Daniel 
    ;
    Masur, Lukas 
    ;
    Schaaf, Kirill 
    ;
    Zacher, Jonas 
    ;
    ;
    Marées, Markus de 
    ;
    Bloch, Wilhelm 
    ;
    Lipofuscin (LF) is an intracellular aggregate associated with proteostatic impairments, especially prevalent in nondividing skeletal muscle fibers. Reactive oxygen species (ROS) drive LF-formation. Resistance training (RT) improves muscle performance but also increases ROS production, potentially promoting LF-formation. Thus, we aimed to investigate if RT of a mesocycle duration increases LF-formation in type-I and II muscle fibers and whether RT increases the antioxidant capacity (AOC) in terms of SOD1 and SOD2 content. An intervention group (IG) performed 14 eccentrically accented RT-sessions within 7 weeks. Vastus lateralis muscle biopsies were collected before and after the intervention from IG as well as from a control group (CG) which refrained from RT for the same duration. LF was predominantly found near nuclei, followed by membrane-near and a minor amount in the fiber core, with corresponding spot sizes. Overall, LF-content was higher in type-I than type-II fibers (p < 0.05). There was no increase in LF-content in type-I or IIA fibers, neither for the IG following RT nor for the CG. The same is valid for SOD1/2. We conclude that, in healthy subjects, RT can be safely performed, without adverse effects on increased LF-formation.
      7
  • Publication
    Metadata only
    Repeated and Interrupted Resistance Exercise Induces the Desensitization and Re-Sensitization of mTOR-Related Signaling in Human Skeletal Muscle Fibers.
    (2022-05-12)
    Jacko, Daniel 
    ;
    Schaaf, Kirill 
    ;
    Masur, Lukas 
    ;
    Windoffer, Hannes 
    ;
    Aussieker, Thorben 
    ;
    Schiffer, Thorsten 
    ;
    Zacher, Jonas 
    ;
    Bloch, Wilhelm 
    ;
    The acute resistance exercise (RE)-induced phosphorylation of mTOR-related signaling proteins in skeletal muscle can be blunted after repeated RE. The time frame in which the phosphorylation (p) of mTORS2448, p70S6kT421/S424, and rpS6S235/236 will be reduced during an RE training period in humans and whether progressive (PR) loading can counteract such a decline has not been described. (1) To enclose the time frame in which pmTORS2448, prpS6S235/236, and pp70S6kT421/S424 are acutely reduced after RE occurs during repeated RE. (2) To test whether PR will prevent that reduction compared to constant loading (CO) and (3) whether 10 days without RE may re-increase blunted signaling. Fourteen healthy males (24 ± 2.8 yrs.; 1.83 ± 0.1 cm; 79.3 ± 8.5 kg) were subjected to RE with either PR (n = 8) or CO (n = 6) loading. Subjects performed RE thrice per week, conducting three sets with 10–12 repetitions on a leg press and leg extension machine. Muscle biopsies were collected at rest (T0), 45 min after the first (T1), seventh (T7), 13th (T13), and 14th (X-T14) RE session. No differences were found between PR and CO for any parameter. Thus, the groups were combined, and the results show the merged values. prpS6S235/236 and pp70s6kT421/S424 were increased at T1, but were already reduced at T7 and up to T13 compared to T1. Ten days without RE re-increased prpS6S235/236 and pp70S6kT421/S424 at X-T14 to a level comparable to that of T1. pmTORS2448 was increased from T1 to X-T14 and did not decline over the training period. Single-fiber immunohistochemistry revealed a reduction in prpS6S235/236 in type I fibers from T1 to T13 and a re-increase at X-T14, which was more augmented in type II fibers at T13 (p < 0.05). The entity of myofibers revealed a high heterogeneity in the level of prpS6S235/236, possibly reflecting individual contraction-induced stress during RE. The type I and II myofiber diameter increased from T0 and T1 to T13 and X-T14 (p < 0.05) prpS6S235/236 and pp70s6kT421/S424 reflect RE-induced states of desensitization and re-sensitization in dependency on frequent loading by RE, but also by its cessation.
      9
  • Publication
    Metadata only
    Maintaining proteostasis under mechanical stress
    (2021)
    Höhfeld, Jörg 
    ;
    Benzing, Thomas 
    ;
    Bloch, Wilhelm 
    ;
    Fürst, Dieter 
    ;
    ;
    Hesse, Michael 
    ;
    Hoffmann, Bernd 
    ;
    Hoppe, Thorsten 
    ;
    Huesgen, Pitter 
    ;
    Köhn, Maja 
    ;
    Kolanus, Waldemar 
    ;
    Merkel, Rudolf 
    ;
    Niessen, Carien 
    ;
    Pokrzywa, Wojciech 
    ;
    Rinschen, Markus 
    ;
    Wachten, Dagmar 
    ;
    Warscheid, Bettina 
    Cell survival, tissue integrity and organismal health depend on the ability to maintain functional protein networks even under conditions that threaten protein integrity. Protection against such stress conditions involves the adaptation of folding and degradation machineries, which help to preserve the protein network by facilitating the refolding or disposal of damaged proteins. In multicellular organisms, cells are permanently exposed to stress resulting from mechanical forces. Yet, for long time mechanical stress was not recognized as a primary stressor that perturbs protein structure and threatens proteome integrity. The identification and characterization of protein folding and degradation systems, which handle force-unfolded proteins, marks a turning point in this regard. It has become apparent that mechanical stress protection operates during cell differentiation, adhesion and migration and is essential for maintaining tissues such as skeletal muscle, heart and kidney as well as the immune system. Here, we provide an overview of recent advances in our understanding of mechanical stress protection.
      3
  • Publication
    Metadata only
    Coordinated alpha-crystallin B phosphorylation and desmin expression indicate adaptation and deadaptation to resistance exercise-induced loading in human skeletal muscle
    (2020)
    Jacko, Daniel 
    ;
    Bersinger, Käthe 
    ;
    Schulz, Oliver 
    ;
    Przyklenk, Axel 
    ;
    Spahiu, Fabian 
    ;
    Höhfeld, Jörg 
    ;
    Bloch, Wilhelm 
    ;
    Skeletal muscle is a target of contraction-induced loading (CiL), leading to protein unfolding or cellular perturbations, respectively. While cytoskeletal desmin is responsible for ongoing structural stabilization, in the immediate response to CiL, alpha-crystallin B (CRYAB) is phosphorylated at serine 59 (pCRYABS59) by P38, acutely protecting the cytoskeleton. To reveal adaptation and deadaptation of these myofibrillar subsystems to CiL, we examined CRYAB, P38, and desmin regulation following resistance exercise at diverse time points of a chronic training period. Mechanosensitive JNK phosphorylation (pJNKT183/Y185) was determined to indicate the presence of mechanical components in CiL. Within 6 wk, subjects performed 13 resistance exercise bouts at the 8–12 repetition maximum, followed by 10 days detraining and a final 14th bout. Biopsies were taken at baseline and after the 1st, 3rd, 7th, 10th, 13th, and 14th bout. To assess whether potential desensitization to CiL can be mitigated, one group trained with progressive and a second with constant loading. As no group differences were found, all subjects were combined for statistics. Total and phosphorylated P38 was not regulated over the time course. pCRYABS59 and pJNKT183/Y185 strongly increased following the unaccustomed first bout. This exercise-induced pCRYABS59/pJNKT183/Y185 increase disappeared with the 10th until 13th bout. As response to the detraining period, the 14th bout led to a renewed increase in pCRYABS59. Desmin content followed pCRYABS59 inversely, i.e., was up- when pCRYABS59 was downregulated and vice versa. In conclusion, the pCRYABS59 response indicates increase and decrease in resistance to CiL, in which a reinforced desmin network could play an essential role by structurally stabilizing the cells.
      3
  • Publication
    Metadata only
    Enhanced Blood Supply Through Lower Body Negative Pressure During Slow-Paced, High Load Leg Press Exercise Alters the Response of Muscle AMPK and Circulating Angiogenic Factors
    (2020)
    Parganlija, Dajana 
    ;
    ;
    Herrera, Frankyn 
    ;
    Rittweger, Jörn 
    ;
    Bloch, Wilhelm 
    ;
    Zange, Jochen 
    Lower body negative pressure (LBNP) is an established method of simulating the gravitational effects of orthostasis on the cardiovascular system during space flight or at supine body position on Earth. We hypothesized that LBNP added onto leg press exercise would promote leg muscle perfusion, stimulate oxygen consumption, and modify acute molecular responses. Eighteen subjects performed fifteen slow-paced concentric (4 s) and eccentric contractions (4 s) without or with 40 mmHg LBNP. Force corresponding to 6% of the one-repetition maximum (1-RM) at knee flexion gradually increased to 60% 1-RM within the first half of the range of motion, thereafter remaining constant. AMPK and P-AMPK protein expression was determined in biopsies of vastus lateralis. Venous blood samples were used to measure angiogenic factors. Physiological responses to LBNP included an elevated EMG amplitude, higher heart rate and doubling of the cardiac output compared to control (p < 0.001). Muscle total hemoglobin was increased by around 20 μmol/l vs. control (p < 0.001), accompanied by decreasing tissue oxygen saturation and elevated oxygen uptake (p < 0.05). MMP-2 levels were reduced, and the ratio of P-AMPK to AMPK elevated after exercise with LBNP (p < 0.05). MMP-9 similarly increased in both groups, whereas endostatin was only elevated in the control group (p < 0.05). Our results indicate facilitated peripheral blood supply and higher oxygen exploitation leading to activation of the energy sensor AMPK and differential regulation of angiogenic factors involved in muscle tissue remodeling and capillary growth. Simulating orthostasis with LBNP might promote beneficial structural adaptations of skeletal muscles during resistance exercise and contribute to future exercise countermeasures achieving increased muscle strength and endurance during space flight.
      2
  • Publication
    Metadata only
    Coordinated alpha-crystallin B phosphorylation and desmin expression indicate adaptation and deadaptation to resistance exercise-induced loading in human skeletal muscle
    (2020)
    Jacko, Daniel 
    ;
    ;
    Schulz, Oliver 
    ;
    Przyklenk, Axel 
    ;
    Spahiu, Fabian 
    ;
    Höhfeld, Jörg 
    ;
    Bloch, Wilhelm 
    ;
    Skeletal muscle is a target of contraction-induced loading (CiL), leading to protein unfolding or cellular perturbations, respectively. While cytoskeletal desmin is responsible for ongoing structural stabilization, in the immediate response to CiL, alpha-crystallin B (CRYAB) is phosphorylated at serine 59 (pCRYABS59) by P38, acutely protecting the cytoskeleton. To reveal adaptation and deadaptation of these myofibrillar subsystems to CiL, we examined CRYAB, P38, and desmin regulation following resistance exercise at diverse time points of a chronic training period. Mechanosensitive JNK phosphorylation (pJNKT183/Y185) was determined to indicate the presence of mechanical components in CiL. Within 6 wk, subjects performed 13 resistance exercise bouts at the 8-12 repetition maximum, followed by 10 days detraining and a final 14th bout. Biopsies were taken at baseline and after the 1st, 3rd, 7th, 10th, 13th, and 14th bout. To assess whether potential desensitization to CiL can be mitigated, one group trained with progressive and a second with constant loading. As no group differences were found, all subjects were combined for statistics. Total and phosphorylated P38 was not regulated over the time course. pCRYABS59 and pJNKT183/Y185 strongly increased following the unaccustomed first bout. This exercise-induced pCRYABS59/pJNKT183/Y185 increase disappeared with the 10th until 13th bout. As response to the detraining period, the 14th bout led to a renewed increase in pCRYABS59. Desmin content followed pCRYABS59 inversely, i.e., was up- when pCRYABS59 was downregulated and vice versa. In conclusion, the pCRYABS59 response indicates increase and decrease in resistance to CiL, in which a reinforced desmin network could play an essential role by structurally stabilizing the cells.
      4
  • Publication
    Metadata only
    Effects of Endurance Exercise Bouts in Hypoxia, Hyperoxia, and Normoxia on mTOR-Related Protein Signaling in Human Skeletal Muscle
    (2020)
    Przyklenk, Axel 
    ;
    Aussieker, Thorben 
    ;
    Gutmann, Boris 
    ;
    Schiffer, Thorsten 
    ;
    Brinkmann, Christian 
    ;
    Strüder, Heiko 
    ;
    Bloch, Wilhelm 
    ;
    Mierau, Andreas 
    ;
    Przyklenk, A, Aussieker, T, Gutmann, B, Schiffer, T, Brinkmann, C, Strüder, HK, Bloch, W, Mierau, A, and Gehlert, S. Effects of endurance exercise bouts in hypoxia, hyperoxia, and normoxia on mTOR-related protein signaling in human skeletal muscle. J Strength Cond Res 34(8): 2276-2284, 2020-This study investigated the effects of short-term hypoxia (HY), hyperoxia (PER), and normoxia on anabolic signaling proteins in response to an acute bout of moderate endurance exercise (EEX) before and after an endurance exercise training intervention. Eleven healthy male subjects conducted one-legged cycling endurance exercise (3 × 30 min·wk for 4 weeks). One leg was trained under hypoxic (12% O2) or hyperoxic conditions (in a randomized cross-over design), and the other leg was trained in normoxia (20.9% O2) at the same relative workload. Musculus vastus lateralis biopsies were taken at baseline (T0) as well as immediately after the first (T1) and last (T2) training session to analyze anabolic signaling proteins and the myofiber cross-sectional area (FCSA). No significant differences were detected for FCSA between T0 and T2 under all oxygen conditions (p > 0.05). No significant differences (p > 0.05) were observed for BNIP3, phosphorylated RSK1, ERK1/2, FoxO3a, mTOR, and S6K1 between all conditions and time points. Phosphorylated Akt/PKB decreased significantly (p < 0.05) at T1 in PER and at T2 in HY and PER. Phosphorylated rpS6 decreased significantly (p < 0.05) at T1 only in PER, whereas nonsignificant increases were shown in HY at T2 (p = 0.10). Despite no significant regulations, considerable reductions in eEF2 phosphorylation were detected in HY at T1 and T2 (p = 0.11 and p = 0.12, respectively). Short-term hypoxia in combination with moderate EEX induces favorable acute anabolic signaling responses in human skeletal muscle.
      2
  • Publication
    Open Access
    Seven Weeks of Jump Training with Superimposed Whole-Body Electromyostimulation Does Not Affect the Physiological and Cellular Parameters of Endurance Performance in Amateur Soccer Players
    (2020)
    Wirtz, Nicolas 
    ;
    Filipovic, André 
    ;
    ;
    de Marées, Markus 
    ;
    Schiffer, Thorsten 
    ;
    Bloch, Wilhelm 
    ;
    Donath, Lars 
    Intramuscular density of monocarboxylate-transporter (MCT) could affect the ability to perform high amounts of fast and explosive actions during a soccer game. MCTs have been proven to be essential for lactate shuttling and pH regulation during exercise and can undergo notable adaptational changes depending on training. The aim of this study was to evaluate the occurrence and direction of potential effects of a 7-weeks training period of jumps with superimposed whole-body electromyostimulation on soccer relevant performance surrogates and MCT density in soccer players. For this purpose, 30 amateur soccer players were randomly assigned to three groups. One group performed dynamic whole-body strength training including 3 x 10 squat jumps with WB-EMS (EG, n = 10) twice a week in addition to their daily soccer training routine. A jump training group (TG, n = 10) performed the same training routine without EMS, whereas a control group (CG, n = 8) merely performed their daily soccer routine. 2 (Time: pre vs. post) x 3 (group: EG, TG, CG) repeated measures analyses of variance (rANOVA) revealed neither a significant time, group nor interaction effect for VO2peak, Total Time to Exhaustion and Lamax as well as MCT-1 density. Due to a lack of task-specificity of the underlying training stimuli, we conclude that seven weeks of WB-EMS superimposed to jump exercise twice a week does not relevantly influence aerobic performance or MCT density.
      8  51
  • Publication
    Metadata only
    Phosphorylation of αB-crystallin and its cytoskeleton association differs in skeletal myofiber types depending on resistance exercise intensity and volume
    (2019)
    Jacko, Daniel 
    ;
    ;
    Hebchen, Jonas 
    ;
    Marées, Markus 
    ;
    Bloch, Wilhelm 
    ;
    αB-crystallin (CRYAB) is an important actor in the immediate cell stabilizing response following mechanical stress in skeletal muscle. Yet, only little is known regarding myofiber type-specific stress responses of CRYAB. We investigated whether the phosphorylation of CRYAB at serine 59 (pCRYABSer59) and its cytoskeleton association are influenced by varying load-intensity and -volume in a fiber type-specific manner. Male subjects were assigned to 1, 5, and 10 sets of different acute resistance exercise protocols: hypertrophy (HYP), maximum strength (MAX), strength endurance (SE), low intensity (LI), and three sets of maximum eccentric resistance exercise (ECC). Skeletal muscle biopsies were taken at baseline and 30 min after exercise. Western blot revealed an increase in pCRYABSer59 only following 5 and 10 sets in groups HYP, MAX, SE, and LI as well as following 3 sets in the ECC group. In type I fibers, immunohistochemistry determined increased pCRYABSer59 in all groups. In type II fibers, pCRYABSer59 only increased in MAX and ECC groups, with the increase in type II fibers exceeding that of type I fibers in ECC. Association of CRYAB and pCRYABSer59 with the cytoskeleton reflected the fiber type-specific phosphorylation pattern. Phosphorylation of CRYAB and its association with the cytoskeleton in type I and II myofibers is highly specific in terms of loading intensity and volume. Most likely, this is based on specific recruitment patterns of the different myofiber entities due to the different resistance exercise loadings. We conclude that pCRYABSer59 indicates contraction-induced mechanical stress exposure of single myofibers in consequence of resistance exercise. NEW & NOTEWORTHY We determined that the phosphorylation of αB-crystallin at serine 59 (pCRYABSer59) after resistance exercise differs between myofiber types in a load- and intensity-dependent manner. The determination of pCRYABSer59 could serve as a marker indirectly indicating contractile involvement and applied mechanical stress on individual fibers. By that, it is possible to retrospectively assess the impact of resistance exercise loading on skeletal muscle fiber entities.
      4
  • Publication
    Metadata only
    Superimposed Whole-Body Electrostimulation Augments Strength Adaptations and Type II Myofiber Growth in Soccer Players During a Competitive Season
    (2019)
    Filipovic, André 
    ;
    DeMarees, Markus 
    ;
    Grau, Marijke 
    ;
    Hollinger, Anna 
    ;
    Seeger, Benedikt 
    ;
    Schiffer, Thorsten 
    ;
    Bloch, Wilhelm 
    ;
    Background The improvement of strength and athletic performance during a competitive season in elite soccer players is a demanding task for the coach. Aims As whole-body electrostimulation (WB-EMS) training provides a time efficient stimulation potentially capable in exerting skeletal muscle adaptations we aimed to test this approach over 7 weeks in trained male soccer players during a competitive season. Hypothesis We hypothesized that a superimposed WB-EMS will increase maximal strength and type I and type II myofiber hypertrophy. Methods Twenty-eight male field soccer players were assigned in either a WB-EMS group (EG, n = 10), a training group (TG, n = 10), or a control group (CG, n = 8). The regular soccer training consists of two to four sessions and one match per week. In concurrent, the EG performed 3 × 10 squat jumps superimposed with WB-EMS twice per week, TG performed 3 × 10 squat jumps without EMS twice per week, and the CG only performed the regular soccer training. Muscle biopsies were collected and strength tests were performed under resting conditions before (Baseline) and after the intervention period (Posttest). Muscle biopsies were analyzed via western blotting and immunohistochemistry for skeletal muscle adaptive responses. To determine the effect of the training interventions a 2 × 3 (time ∗ group) mixed ANOVA with repeated measures was conducted. Results Maximal strength in leg press (p = 0.009) and leg curl (p = 0.026) was significantly increased in EG along with a small but significant increase in type II myofiber diameter (p = 0.023). All of these adaptations were not observed in TG and CG. Conclusion WB-EMS can serve as a time efficient training method to augment strength capacities and type II fiber myofiber growth in soccer players when combined with specific resistance training. This combination may therefore be a promising training modification compared to traditional strength training for performance enhancement.
      3